Stochastic Loewner Equation and Critical Phenomena in 2D

Razvan Teodorescu

Theoretical Division
Los Alamos National Laboratory

September 19, 2007

A first mystery: S, L, E ...

A) Stochastic Loewner Evolution

- A) Stochastic Loewner Evolution
- B) Stochastic Loewner Equation

- A) Stochastic Loewner Evolution
- B) Stochastic Loewner Equation
- C) Schramm-Loewner Evolution

- A) Stochastic Loewner Evolution
- B) Stochastic Loewner Equation
- C) Schramm-Loewner Evolution
- **D)** All of the above

A first mystery: S, L, E ...

- A) Stochastic Loewner Evolution
- B) Stochastic Loewner Equation
- C) Schramm-Loewner Evolution
- **D)** All of the above

Stochastic Evolution

A first mystery: S, L, E ...

- A) Stochastic Loewner Evolution
- B) Stochastic Loewner Equation
- C) Schramm-Loewner Evolution
- **D)** All of the above

Stochastic Evolution from the Loewner Equation

What's in a name?

Stochastic Loewner ...

A first mystery: S, L, E ...

- A) Stochastic Loewner Evolution
- B) Stochastic Loewner Equation
- C) Schramm-Loewner Evolution
- **D)** All of the above

Stochastic Evolution from the Loewner Equation derived by Schramm

Prizes ... Stochastic Loewner ...

Names and rewards ...

Oded Schramm: the 2002 Clay Research Institute Award

• Stanislav Smirnov: the 2001 Clay Research Institute Award

Prizes ... Stochastic Loewner ...

... and some more

• Greg Lawler: the 2006 George Polya Award (with Schramm and Werner)

• Wendelin Werner: the 2006 Fields Medal

The original Stochastic Loewner ...

The (everyday) Loewner equation

• Karel Löwner, Karl Löwner, Charles Loewner: 1893 - 1968

• Loewner equation (1923) - used to prove the Bieberbach conjecture ($|a_n| \le n$ for univalent functions) by Louis de Branges (1985)

The (everyday) Loewner equation

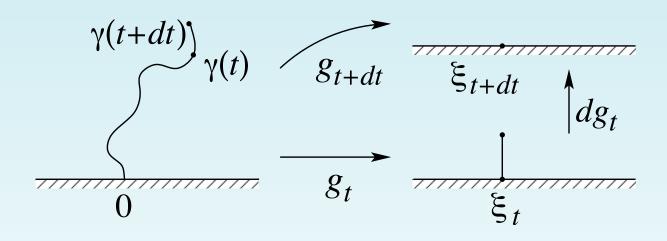
• Karel Löwner, Karl Löwner, Charles Loewner: 1893 - 1968

• Loewner equation (1923) - used to prove the Bieberbach conjecture $(|a_n| \le n \text{ for univalent functions})$ by Louis de Branges (1985)

$$\frac{\partial g_t(z)}{\partial t} = \frac{2}{g_t(z) - \xi_t}, \quad g_0(z) = z$$

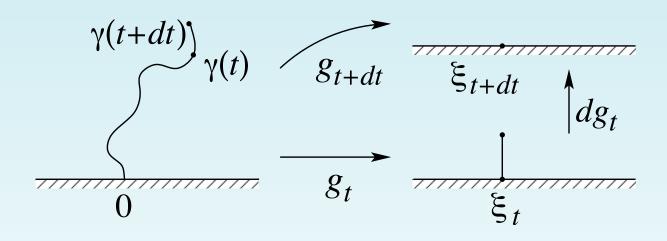
Loewner equation: evolution of conformal maps

Loewner equation: evolution of conformal maps



$$dg_t(w) = \xi_t + \sqrt{(w - \xi_t)^2 + 4dt},$$

Loewner equation: evolution of conformal maps



$$dg_t(w) = \xi_t + \sqrt{(w - \xi_t)^2 + 4dt},$$

$$g_{t+dt}(z) = \xi_t + \sqrt{(g_t(z) - \xi_t)^2 + 4dt} \approx g_t(z) + \frac{2dt}{g_t(z) - \xi_t}.$$

Standard maps

• Upper half-plane: chordal case

$$\dot{g}_t(z) = 2[g_t(z) - \xi_t]^{-1},$$

Standard maps

• Upper half-plane: chordal case

$$\dot{g}_t(z) = 2[g_t(z) - \xi_t]^{-1},$$

• Unit disc: radial case

$$\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + e^{i\xi(t)}}{g_t(z) - e^{i\xi(t)}},$$

Standard maps

Upper half-plane: chordal case

$$\dot{g}_t(z) = 2[g_t(z) - \xi_t]^{-1},$$

Unit disc: radial case

$$\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + e^{i\xi(t)}}{g_t(z) - e^{i\xi(t)}},$$

• Stripe $\{z \in \mathbb{C} : |\Im z| \le \pi \Delta\}$: dipolar case

$$\dot{g}_t(z) = \frac{\Delta^{-1}}{\tanh[(z - \xi_t)/\Delta]}$$

Stochastic evolution Stochastic Loewner ...

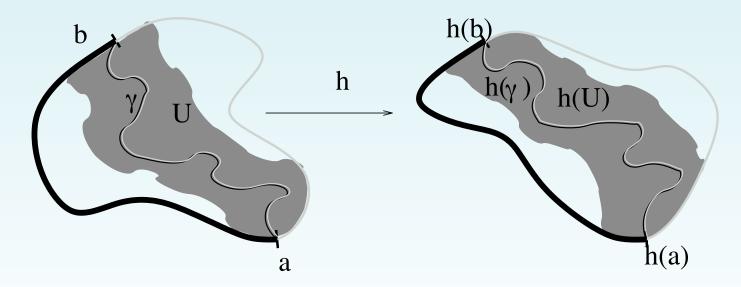
Schramm-Loewner evolution

Adding randomness, statistical independence, reflexion symmetry:

Schramm-Loewner evolution

Adding randomness, statistical independence, reflexion symmetry:

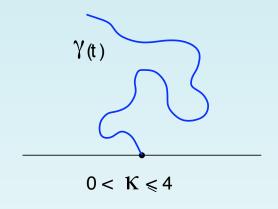
$$\partial_t g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t}, \ g_0(z) = z \ (\mathsf{SLE}_k).$$



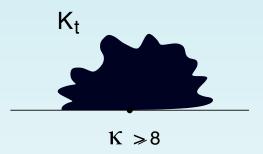
Properties

Stochastic Loewner ...

The phases of SLE





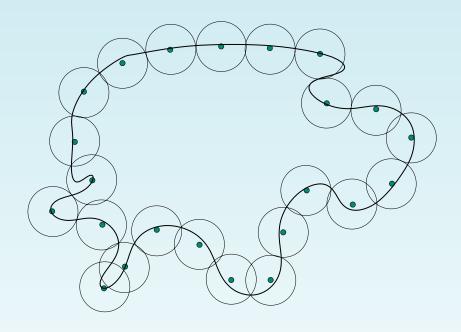


Fractal dimension of the trace d_f :

$$d_f(\kappa) = \begin{cases} 1 + \frac{\kappa}{8} & \text{for } \kappa \le 8, \\ 2 & \text{for } \kappa \ge 8. \end{cases}$$

Properties Stochastic Loewner ...

Scaling properties of SLE traces



$$N_{\epsilon} \sim \epsilon^{-d_f(\kappa)}, \quad {
m multifractal \ spectrum}$$

UNM 2007

CFT models Stochastic Loewner ...

2D critical phenomena and CFT

• 2D Ising model:

$$Z[\beta, h] = \sum_{S_i = \pm 1} \exp \left[-\beta \left(\sum_{\langle i, j \rangle} S_i S_j + h \sum_i S_i \right) \right]$$

2D critical phenomena and CFT

• 2D Ising model:

$$Z[\beta, h] = \sum_{S_i = \pm 1} \exp \left[-\beta \left(\sum_{\langle i, j \rangle} S_i S_j + h \sum_i S_i \right) \right]$$

• Onsager (1934) - Baxter (transfer matrix)

CFT models Stochastic Loewner ...

2D critical phenomena and CFT

• 2D Ising model :

$$Z[\beta, h] = \sum_{S_i = \pm 1} \exp \left[-\beta \left(\sum_{\langle i, j \rangle} S_i S_j + h \sum_i S_i \right) \right]$$

- Onsager (1934) Baxter (transfer matrix)
- McCoy and Wu (1972), Jimbo-Miwa-Sato-Ueno (1980) Painlevé transcendents: conformal invariance as linearization

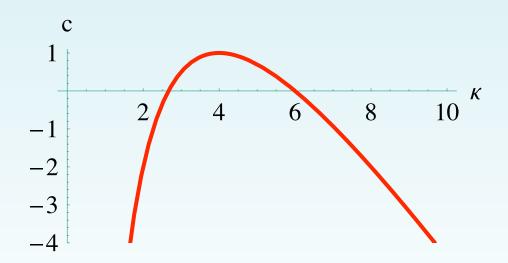
SLE and lattice statistical models

SLE traces are critical curves in corresponding lattice models.

SLE and lattice statistical models

SLE traces are critical curves in corresponding lattice models.

$$c_{\kappa} = \frac{(8-3\kappa)(\kappa-6)}{2\kappa} = 1 - 3\frac{(\kappa-4)^2}{2\kappa}, \ c_{\kappa} = c_{\kappa'}, \ \kappa' = \frac{16}{\kappa}.$$



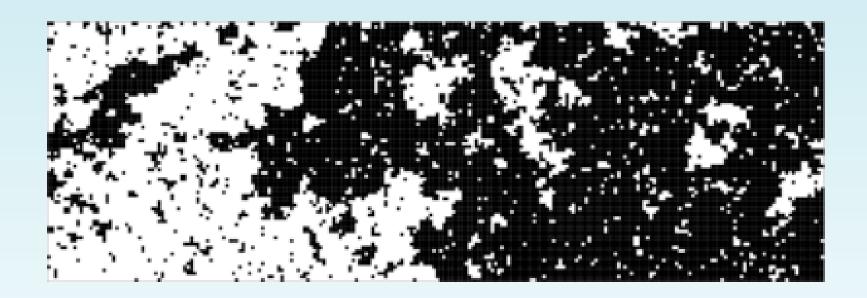
Known and conjectured correspondences

Known and conjectured correspondences

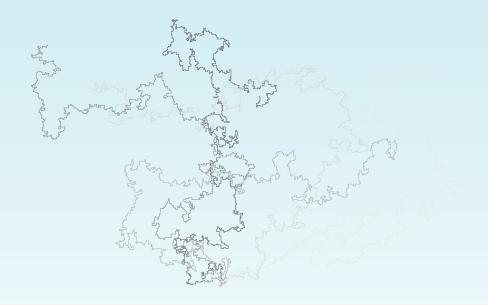
Lattice model	κ	c_{κ}
Loop-erased random walk	2	-2
Self-avoiding random walk	8/3	0
Ising model		
spin cluster boundaries	3	1/2
Dimer tilings	4	1
Harmonic explorer	4	1
Level lines of Gaussian field	4	1
Percolation cluster boundaries	6	0
Uniform spanning trees	8	-2

UNM 2007

Ising clusters



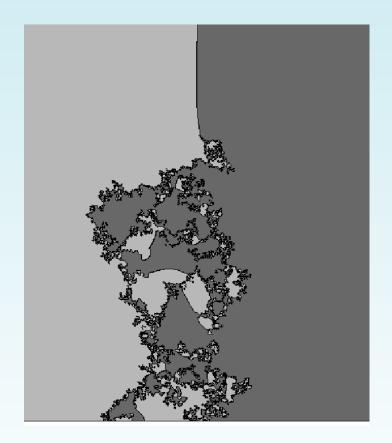
SAW random walk



Gaussian field level lines

UNM 2007 15

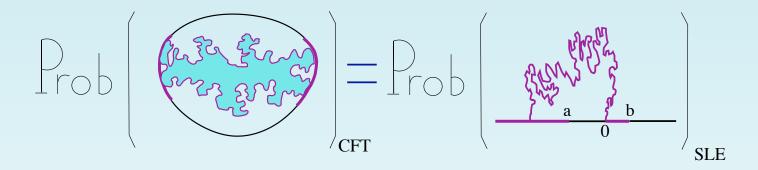
Percolation clusters



UNM 2007 16

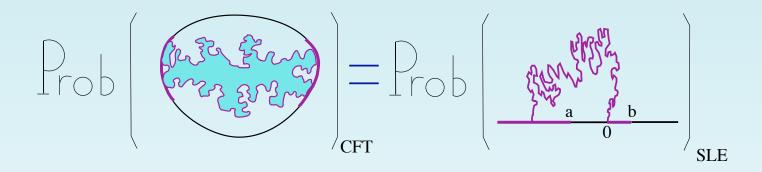
Computing with SLE Stochastic Loewner ...

Cardy's formula for anisotropic percolation



Computing with SLE Stochastic Loewner ...

Cardy's formula for anisotropic percolation

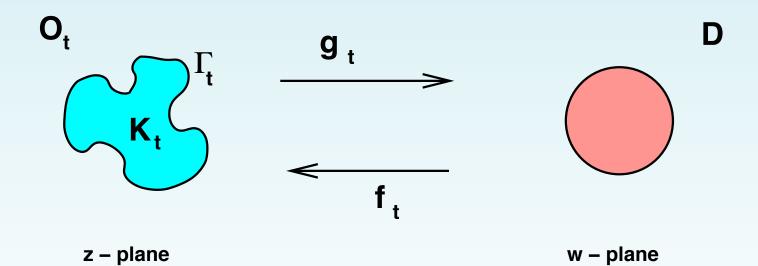


$$\mathbf{P}[\text{crossing}] = \frac{\Gamma\left(2 - \frac{8}{\kappa}\right)}{\Gamma\left(2 - \frac{4}{\kappa}\right)\Gamma\left(1 - \frac{4}{\kappa}\right)} r^{1 - 4/\kappa} {}_{2}F_{1}\left(\frac{4}{\kappa}, 1 - \frac{4}{\kappa}; 2 - \frac{4}{\kappa}; r\right).$$

Stochastic Loewner ...

Radial SLE

$$\dot{g}_t(z) = -g_t(z) \frac{g_t(z) + e^{i\sqrt{\kappa}B(t)}}{g_t(z) - e^{i\sqrt{\kappa}B(t)}}$$



Multiple SLE

N driving forces ξ_i :

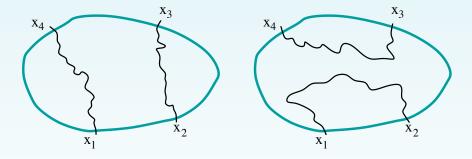
$$dg_t(z) = \sum_{i=1}^{n} \frac{2dt}{g_t(z) - \xi_t^{(i)}}.$$

Multiple SLE

N driving forces ξ_i :

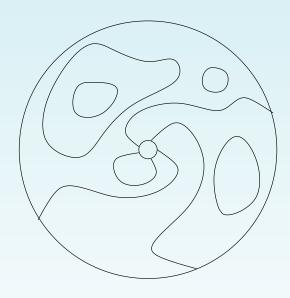
$$dg_t(z) = \sum_{i=1}^{n} \frac{2dt}{g_t(z) - \xi_t^{(i)}}.$$

N-point correlation functions



Multiple radial SLE's

- J. Cardy, Stochastic Loewner evolution and Dyson's circular ensembles,
- J. Phys. A: Math. Gen. **36**, L379 (2003); arXiv: math-ph/0301039.



Radial SLE and Calogero-Sutherland model

Simple-pole solution of Kadomtsev-Petviashvilii integrable hierarchy

Radial SLE and Calogero-Sutherland model

Simple-pole solution of Kadomtsev-Petviashvilii integrable hierarchy

$$P_{\rm eq}(\{\theta_j\}) \propto \prod_{1 \leq j < k \leq N} \left| e^{i\theta_j} - e^{i\theta_k} \right|^{\beta}, \quad \beta = 4/\kappa \quad {\rm (Dyson)}.$$

Radial SLE and Calogero-Sutherland model

Simple-pole solution of Kadomtsev-Petviashvilii integrable hierarchy

$$P_{\text{eq}}(\{\theta_j\}) \propto \prod_{1 \leq j < k \leq N} \left| e^{i\theta_j} - e^{i\theta_k} \right|^{\beta}, \quad \beta = 4/\kappa \quad \text{(Dyson)}.$$

Correlations functions of N radial SLE solve the Calogero-Sutherland model:

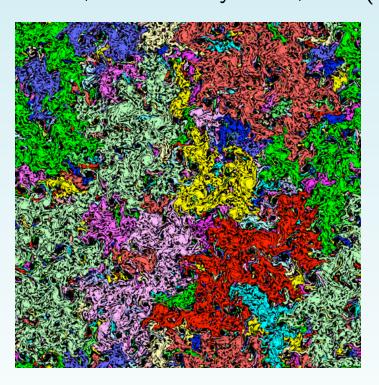
$$\mathcal{H} = -\frac{\kappa}{2} \sum_{j} \frac{\partial^2}{\partial \theta_j^2} + \frac{2 - \kappa}{2\kappa} \sum_{j < k} \frac{1}{\sin^2(\theta_j - \theta_k)/2} - \frac{N(N - 1)}{2\kappa}$$

UNM 2007

Exotic SLE Stochastic Loewner ...

Zero vorticity lines in 2D turbulence and SLE₆

D. Bernard, G. Boffetta, A. Celani, G. Falkovich, *Conformal invariance in two-dimensional turbulence*, Nature Physics **2**, 124 (2006).



UNM 2007 22

Exotic SLE Stochastic Loewner ...

Domain walls in Ising spin glasses

C. Amoruso, A. K. Hartmann, M. B. Hastings, and M. A. Moore, Conformal invariance and SLE in two-dimensional Ising spin glasses, arXiv: cond-mat/0601711.

Conformal invariance of domain walls:

$$d_f = \frac{5}{4}, \quad \kappa = 2, \quad \text{Loop-erased RW}$$

UNM 2007

SLE chains and 2D growth processes

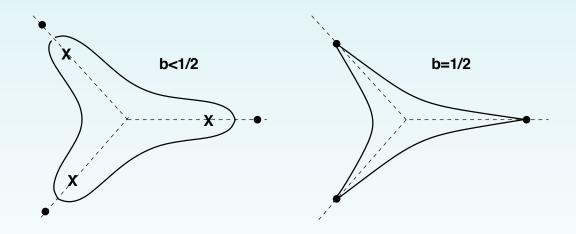
 $N \to \infty$ generalization of N radial SLE:

$$\frac{\partial}{\partial t}g_t(z) = -g_t(z) \oint \frac{\rho_t(u)du}{2i\pi u} \left(\frac{g_t(z) + u}{g_t(z) - u}\right)$$

SLE chains and 2D growth processes

 $N \to \infty$ generalization of N radial SLE:

$$\frac{\partial}{\partial t}g_t(z) = -g_t(z) \oint \frac{\rho_t(u)du}{2i\pi u} \left(\frac{g_t(z) + u}{g_t(z) - u}\right)$$



2D growth under harmonic forces: DLA and LG

• Local growth law:
$$\frac{dP(\vec{r})}{dt} = -\vec{\nabla}_n \phi(\vec{4r})$$

2D growth under harmonic forces: DLA and LG

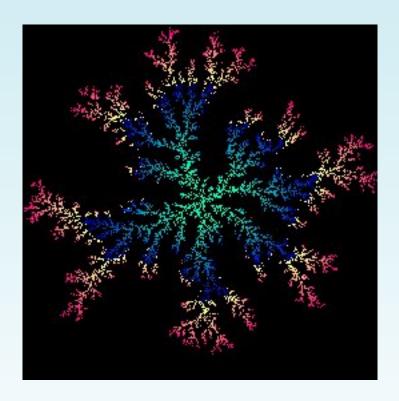
• Local growth law: $\frac{dP(\vec{r})}{dt} = -\vec{\nabla}_n \phi(\vec{4r})$

• Discrete process: Diffusion Limited Aggregation

2D growth under harmonic forces: DLA and LG

- Local growth law: $\left| \frac{dP(\vec{r})}{dt} = -\vec{\nabla}_n \phi(\vec{4r}) \right|$
- Discrete process: Diffusion Limited Aggregation
- Averaged process: Laplacian Growth

Radial diffusion limited aggregation



UNM 2007 26

Radial laplacian growth (idealized Hele-Shaw flows)

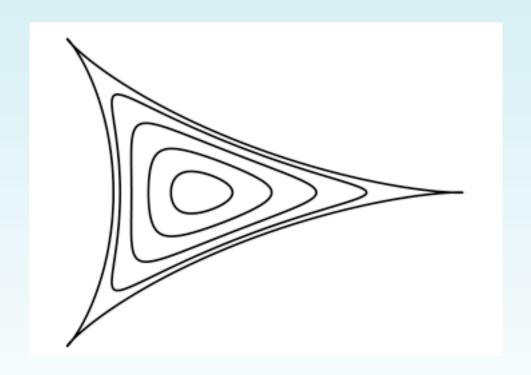
$$V_n = -\vec{\nabla}_n p$$

$$\Delta p = 0 \quad \text{outside}$$

UNM 2007

Resolving finite-time singularities of Hele-Shaw flows (Saffman, Taylor, Sakai, Kadanoff, Bensimon, Howison, King, Tanveer, Crowdy, ...)

Resolving finite-time singularities of Hele-Shaw flows (Saffman, Taylor, Sakai, Kadanoff, Bensimon, Howison, King, Tanveer, Crowdy, ...)



UNM 2007

Conclusions

• New theoretical tool for stochastic processes with exclusion

Conclusions

- New theoretical tool for stochastic processes with exclusion
- Exact derivations for old CFT results

Conclusions

- New theoretical tool for stochastic processes with exclusion
- Exact derivations for old CFT results
- Continuum generalizations: planar growth processes